# Pharmacokinetics and Pharmacodynamics of BV100 in **Neutropenic Mouse Lung Infection Models**

#### INTRODUCTION

BV100 (rifabutin for infusion) is being developed by BioVersys for the treatment of serious infections due to Acinetobacter baumannii . exerts potent antibacterial activity against (RBT) Rifabutin A. baumannii under iron-limiting conditions<sup>1,2</sup>. RBT highjacks the A. baumannii siderophore receptor FhuE for active uptake enabling potent activity.

The goal was to identify the most important PK/PD index that correlates with efficacy and the estimates of index for the static, oneand two-log reductions in CFU.

#### METHODS

- MICs of rifabutin were measured on MHA + 0.1 mM PIH
- A single dose of BV100 (Rifabutin for infusion) was administered intravenously to neutropenic mice with a volume of 5 mL/kg.
- To describe the pharmacokinetics of BV100 in mice all samples were analyzed simultaneously using NONMEM 7.4.2 software.
- Model selection was based on a change in the objective function value (OFV), goodness-of-fit plots, parameter precision, shrinkage, visual predictive checks (VPC) and normalized prediction distribution errors (NPDE's).
- The population estimates of the final model were used in KINFUN to calculate the PK/PD indices, such as fAUC<sub>0-24h</sub>/MIC, fC<sub>max</sub>/MIC and *f*%T>MIC. Models were fitted without constraint if possible, and the fits were judged by R<sup>2</sup> values and visual inspection.
- A diagram of the procedures and summary of experiments in the reports is described below. Treatment was started 2h after infection (t=0) and continued for 24h (t=24h).



### RESULTS



**Figure 1**. Single dose time-concentration profiles of mean plasma concentrations and dose proportionality plots of AUC<sub>0-inf</sub> and C<sub>max</sub> of rifabutin after iv administration

| arameter                   | Final model (RSE%)<br>[shrinkage] | 90% percentile<br>bootstrap |
|----------------------------|-----------------------------------|-----------------------------|
| /c (L/kg)                  | 1.83 (2)                          | 1.61-2.07                   |
| CL (L/h/kg)                | 0.745 (2)                         | 0.681-0.822                 |
| /p (L/kg)                  | 1.36 (3)                          | 1.23-1.54                   |
| Q (L/h/kg)                 | 1.31 (13)                         | 1.04-1.73                   |
| Additional error<br>ng/mL) | 2.39 (29)                         | 0.10-3.60                   |
| Proportional<br>error      | 0.159 (1)                         | 0.128-0.183                 |
| IV CL (%)                  | 39.8 (12) [3]                     | 30.0-44.9                   |
| IV Vc (%)                  | 58.0 (12) [6]                     | 43.2-64.4                   |









**Table 1**. Parameter estimates of the population pharmacokinetic
 and bootstrap (n=1000), central (Vc) and peripheral volume of distribution (Vp), clearance (CL), intercompartmental clearance (Q), interindividual clearance (IIV).

#### CONCLUSIONS

- A population PK model was developed and the VPC, NPDE and bootstrap showed that the model adequately described the data.
- 2. The pharmacodynamic index of BV100 (rifabutin for infusion) that best correlated to efficacy in the A. baumannii neutropenic mouse lung infection model was the *f*AUC/MIC ratio.
- The mean *f*AUC/MIC for a static effect was 0.83 and for a 1-log and 2-log reduction were 1.02 and 1.28, respectively.
- 4. The safety and tolerability of BV100 is currently being evaluated in Phase 1 clinical studies.

<sup>1</sup>Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre Rotterdam, <sup>2</sup>Department of Medical Microbiology, Haaglanden Medical Centre, <sup>3</sup>Department of Hospital Pharmacy, Erasmus MC University Medical Centre Rotterdam, <sup>4</sup>BioVersys AG, Switzerland, <sup>5</sup>University of North Texas Health Science Center, U.S.A.

Figure 2. Relationships of BV100 24h fAUC/MIC, fC<sub>max</sub>/MIC as well as %fT>MIC. Each dot represents a therapy response in one mouse thigh. The line is the best-fit line based on the sigmoidal E<sub>max</sub> model

**Table 2**. Estimates for *f*AUC/MIC for the isolates of the dose response analysis.

#### REFERENCES

- Acinetobacter baumannii. Nat. Microbiol. 1–10 (2020).
- Antimicrob. Chemother. 75, 3552–3562 (2020).

## **V**BIOVERSYS

#### A. E. MULLER<sup>1,2</sup>, B.C.M. de WINTER<sup>3</sup>, M. GITZINGER<sup>4</sup>, C. KEMMER<sup>4</sup>, S. LOCIURO<sup>4</sup>, M. E. PULSE<sup>5</sup>, B. SCHELLHORN<sup>4</sup>, V. TREBOSC<sup>4</sup>, W. J. WEISS<sup>5</sup>, G.E. DALE<sup>4</sup>

| Isolate    | MIC   | stasis | 1-log kill | 2-log kill |
|------------|-------|--------|------------|------------|
| NT235-1    | 0.008 | 0.61   | 0.75       | 0.95       |
| NT237-1    | 0.004 | 0.82   | 1.18       | 1.76       |
| NT087-1    | 4     | 1.19   | 1.41       | 1.66       |
| NT239-1    | 1     | 0.8    | 0.97       | 1.16       |
| NT191-1    | 2     | 1.16   | 1.39       | 1.69       |
| NT091-1    | 0.016 | 0.65   | 0.84       | 1.12       |
| NT193-1    | 0.031 | 0.54   | 0.68       | 0.90       |
| NT238-1    | 1     | 0.86   | 0.94       | 1.02       |
| ean (n=8)  | -     | 0.83   | 1.02       | 1.28       |
| dian (n=8) | _     | 0.81   | 0.95       | 1.14       |

1. Luna, B. et al. A nutrient-limited screen unmasks rifabutin hyperactivity for extensively drug-resistant

2. Trebosc, V. et al. In vitro activity of rifabutin against 293 contemporary carbapenem-resistant Acinetobacter baumannii clinical isolates and characterization of rifabutin mode of action and resistance mechanisms. J.