Rifabutin synergy / antagonism with SoC antibiotics in Acinetobacter baumannii

INTRODUCTION

antibacterial Rifabutin potent activity against *baumannii* under iron-limiting conditions¹. RBT Acinetobacter highjacks the A. baumannii siderophore receptor FhuE for active uptake enabling potent activity and overcoming common rifampicin (RIF) resistance mechanisms (Figure 1)².

Here we investigated the activity of RBT in combination with standard of care (SoC) antibiotics against *A. baumannii* clinical strains.

Figure 1. RBT and RIF mode of action against A. baumannii. Rifabutin is transported by FhuE in iron limited medium, allowing high intracellular concentration and potent activity in contrast to rifampicin.

METHOD

Synergy / antagonism was evaluated on A. baumannii clinical isolates with elevated RBT MIC using checkerboard and time-kill curve in diverse media. Fractional inhibitory concentration index (FICI) were calculated as follow:

 $FICI = (MICA_{combination A+B} / MIC_{antibiotic A}) + (MICB_{combination A+B} / MIC_{antibiotic B}),$ synergy (FICI ≤0.5); indifferent (FICI >0.5 and ≤4); antagonistic (FICI >4).

RESULTS

1) RBT synergy with SoC antibiotics.

RBT synergy with SoC antibiotics was assessed using checkerboard assay on the representative A. baumannii LAC-4 strain.

2. Checkerboard MIC illustrating Figure RBT/COL synergy.

Table 1. RBT combination against A. baumannii LAC-4 strain determined in CAMHB.

Combination antibiotics	FICI	Interpretation				
Colistin (COL)	0.254	synergy				
Meropenem	1	indifferent				
Cefotaxime	1.5	indifferent				
Ciprofloxacin	1.5	indifferent				
Tobramycin	1.5	indifferent				
Cefiderocol* (FDC) 0.5 synergy						
Eravacycline	1	indifferent				
Minocycline 1 indifferen						
* Determined in iron-depleted CAMHB						

- No antagonism between RBT and SoC
- **RBT synergizes with COL and FDC**

CONCLUSIONS

RBT synergizes with FDC and COL against A. baumannii. COL synergy is potent and conserved in A. baumannii, regardless of initial resistance level / mechanism, overcoming both RBT and COL resistance mechanisms. In contrast, COL synergy with RIF does not allow to overcome resistance. RBT combination with COL or FDC may have the potential to improve the treatment of infections caused by highly resistant A. baumannii strains.

2) RBT synergy with cefiderocol and colistin.

RBT synergy with cefiderocol and colistin was further studied on a panel of 17 A. baumannii isolates with elevated RBT MIC. The iron limiting RPMI + 10% FCS medium induces FhuE mediated RBT uptake, in contrast to the rich CAMHB medium where FhuE expression is not permissive. Iron-depleted CAMHB was not used to prevent skipped MIC wells².

Strain	Mutations		RBT MIC (mg/L)		COL MIC (mg/L)		RIF MIC FDC MIC		Combination			
Strain	КроВ	FhuE ^a	b	С	b	C	(mg/L) ^c	(mg/L) ^c	RBT/FDC ^c	RBT/COL ^b	RBT/COL ^c	RIF/COL
HUMC1	-	-	0.002	4	0.25	0.5	4	2	indifferent	indifferent	synergy	synergy
UNT091-1	-	-	0.001	8	0.25	0.5	4	4	synergy	indifferent	synergy	synergy
IHMA690517	-	LAC-4	2	8	0.5	16	4	0.25	indifferent	synergy	synergy	synergy
IHMA863866	-	Δ	2	4	0.5	> 32	2	4	synergy	synergy	synergy	synergy
IHMA919656	-	LAC-4	4	4	1	> 32	2	0.125	indifferent	synergy	synergy	synergy
IHMA1013816	-	LAC-4	2	8	0.063	16	2	0.06	indifferent	synergy	synergy	synergy
ACC00535	-	LAC-4	2	16	0.5	0.5	> 32	16	synergy	synergy	synergy	synergy
LAC-4	-	LAC-4	1	4	0.25	0.5	2	1	synergy	synergy	synergy	synergy
UNT238-1	-	Δ	1	8	0.5	0.25	2	4	indifferent	synergy	synergy	synergy
UNT191-1	-	LAC-4	2	16	0.125	2	4	16	synergy	synergy	synergy	synergy
UNT239-1	-	Δ	0.25	4	0.5	1	2	4	synergy	synergy	synergy	synergy
UNT087-1	-	Δ	2	16	0.06	1	4	0.5	indifferent	synergy	synergy	indiffere
402292-17	H535C	-	0.125	> 32	0.125	1	> 32	> 32	indifferent	indifferent	synergy	indiffere
402608-17	H535C	-	0.25	128	2	1	> 32	8	synergy	indifferent	synergy	synergy
IHMA867231	H535N, L542F	LAC-4	> 32	> 32	1	32	> 32	1	indifferent	synergy	synergy	synergy
401046-18	S521T, H535Q	LAC-4	32	64	0.125	0.5	> 32	128	indifferent	synergy	synergy	synergy
401255-18	S521T, H535Q	LAC-4	8	128	0.125	0.25	> 32	16	indifferent	synergy	synergy	synergy
a EbuELAC Asymptotic pot transporting PPT EbuE As disrupted EbuE b Determined in PDML + 100/ ECS (Determined in CAMUP												

 $^{\circ}$ FNUE LAC-4: VUNUNI NOI ITANSPOTIING KBT, FNUE Δ : distupled FNUE. $^{\circ}$ Deletinined in KPIVII + 10% FCS. $^{\circ}$ Deletinined in CANIND

Figure 3. RBT MIC fold decree In combination with This results in RBT	Table 2.	RBT synergizes with RBT synergizes with No RBT/COL synergy RIF synergizes with (
	Figure 3.	RBT MIC fold decrea In combination with This results in RBT M
Figure 4. • KBI/COL combinat	Figure 4. •	RBT/COL combinatio

Table 2. Antibiotic MICs and combination activities determined against a panel of *A. baumannii* clinical isolates.

n FDC against 41% of the tested strains.

COL against 100% of the tested strains, regardless of resistance level.

in strains with active uptake (FhuE) in RPMI + FCS (in line with COL MoA).

COL against 88% of the tested strains.

ase in combination is more pronounced with COL than FDC.

COL, RBT MIC fold decrease is more pronounced than RIF MIC fold decrease.

 MIC_{90} of 0.25 mg/L in combination with COL while RIF MIC_{90} is at > 32 mg/L.

on overcomes both RBT and COL resistance, while RIF/COL does not.

REFERENCES

1. Luna, B. et al. A nutrient-limited screen unmasks rifabutin hyperactivity for extensively drug-resistant Acinetobacter baumannii. Nat. Microbiol. 1–10 (2020)

2. Trebosc, V. et al. In vitro activity of rifabutin against 293 contemporary carbapenemresistant Acinetobacter baumannii clinical isolates and characterization of rifabutin mode of action and resistance mechanisms. J. Antimicrob. Chemother. 75, 3552–3562 (2020).

W BIOVERSYS

V. TREBOSC¹, B. SCHELLHORN¹, J. SCHILL¹, M. GITZINGER¹, <u>S. LOCIURO¹</u>, C. KEMMER¹, G. DALE¹ ¹ BioVersys AG, 60C Hochbergerstrasse, 4057 Basel, Switzerland

Figure 3. RBT (turquoise) and RIF (white) combination MIC fold decrease (A) and combination MIC distribution (B) determined in CAMHB against 17 A. baumannii isolates.

Figure 4. Time kill of RBT and RIF alone or in combination with COL against the A. baumannii IHMA867231 strain in CAMHB medium.